
Tips and Rules to Control your Application
Development and Performances

Jean-Philippe Bacher

qualimatest sa (Head Office) (Branch Office)
Chemin des Aulx 18 Brunnmattstrasse 9
1228 Geneva – Switzerland 3174 Thörishaus – Switzerland
Tel. +41-22 884 00 30 • Fax +41-22 884 00 40 Tel. +41-31 888 88 00 • Fax +41-31 888 88 01

Page 2 / 19

Qualimatest SA in 4 lines

• Integrator in Vision & Automation
• Using LabVIEW since 1991
• National Instruments Select Alliance

Partner
• Markets: medical devices, watch

industry, automotive, …

Page 3 / 19

Reminder: Software development process

Requirements
Design

Development
Testing

~30%

~20%

~30%

~20%

Page 4 / 19

Is everything under control ?

q Is SW architecture and data management clear for
me, did I document it ?

q Today, do I know which specifications are fulfilled
and which are not ?

q Do I have clearly identified critical functions from
the performances point of view ?

q Do I have any idea about the SW test protocol ?

q What if somebody else should continue the
development ?

Page 5 / 19

How to increase control ?

• Specifications management (see next talk)

• Early definition of test protocol

• Standardize, Re-use

• Follow development rules

• Use modular architecture

• Identify critical tasks

• Module test and code review

Page 6 / 19

Standardization, where should I start ?

• Controls & Indicators

• UI interface (menu)

• Configuration

• Modules related to often used HW

• Your standard data processing

• Your standard reports or data logging

• Things that you are coding for the 3rd time

Page 7 / 19

Standardization, example

• GUI

• Image acquisition configuration

• Calibration

• Image processing configuration

• Standard production mode

Page 8 / 19

Examples and templates

• Often a good start

• A good way to increase your knowledge

• Among them, some popular ones :

• Functional Global

• State Machine

• Queued Message Handler

• Master-Slave Design Pattern

• Inspiration for your own templates and
standards

Page 9 / 19

Examples and templates

Page 10 / 19

Examples and templates

Page 11 / 19

Modular architecture

• 1 module per HW type

• 1 module per group of functions

• 1 data set per module (data is where it is needed)

• Separation between critical and non-critical tasks

• Benefits:

– Increased Reusability

– Increased Testability

– Increased Maintainability

Page 12 / 19

Critical tasks identification

• Acquisition tasks

• Parallel tasks

• Triggered tasks

• Synchronizations

• Big-size data storage

• Big-size data manipulation

• Complex signal processing

• Communication

Page 13 / 19

Performance measurement tools

• VI Properties

• Profile window

• Show Buffer Allocation

• Custom tool

Page 14 / 19

Example

100x100 DBL -> 15ms 250kB
200x200 DBL -> 1500ms 1300kB
200x200 U32 -> 120ms 640kB
Same via LOC -> 550ms 800kB
Same via GLO -> 640ms 800kB

See “LabVIEW Performance and Memory Management”, AN-168

Page 15 / 19

Project manager

Gives you the overview,
helps you structure your work.

Page 16 / 19

10 tips summary

1. Define and manage requirements

2. Take your time on design, architecture & data structure

3. Think modular

4. Define simulation modes

5. Use project explorer to structure your work

6. Use your standard

7. Use templates & examples

8. Use STD, FGLO & QMH

9. Do code review

10. Add to Standard

Page 17 / 19

Tutorials and application notes

• LabVIEW Performance and Memory Management, AN-168
• Best Practices for Developing Large Applications using a Structured

Development Approach, Tutorial
• Optimizing VI Performance, Tutorial
• Using LabVIEW to Create Multithreaded Applications for Maximum

Performance and Reliability, AN-114
• LabVIEW Unit Validation Test Procedure, AN-137

Page 18 / 19

Webcasts

• Best Practices for Managing Application Development with the
LabVIEW Project

• How to Perform Validation on a LabVIEW Application
• Managing Requirements and Developing Large LabVIEW

Applications
• Optimize Your VI Performance (Part I & II)
• Performing Technical Code Reviews to Improve LabVIEW Code

Quality

• Software Design Architectures in NI LabVIEW
• Using NI LabVIEW for Object-Oriented Programming
• Using the Event Structure for More Than Just the User Interface

Page 19 / 19

Contact us for your projects…

• On the web

– Web Site: http://www.qmt.ch

– E mail : info@qmt.ch

• Geneva, headquarters (Plan-les-Ouates)

– Tél. : + 41 22 - 884 00 30

– Fax : + 41 22 - 884 00 40

• Thörishaus (Bern area)

– Tél. : + 41 31 - 888 88 00

– Fax : + 41 31 - 888 88 01

